
Table of Contents
Introduction

Getting Started 2
Building Blocks 3
Controls 7
Layout 9
Input 13
Menu 20
Status Bar 22
Drag and Drop 24
Clipboard 27
Rendering Graphics 29
Printing 38
Resource URIs 40
Focus Management 42
System Requirements 43

Tutorials
Hello, World 44
Hello, World (Command Line) 50
Rendering Graphics with DrawingContext 57

How-To Guides
Debugging with AlterNET UI Sources 63
Using AlterNET UI NuGet Packages 65
Using UIXML Previewer 66
Using SkiaSharp 67

2 / 70

Getting Started
AlterNET UI allows you to develop light-footprint cross-platform .NET desktop applications.

You can use your favorite .NET development environments on Windows, macOS, and Linux to develop
AlterNET UI applications: Microsoft Visual Studio and Visual Studio Code .

IDE Support
Microsoft Visual Studio
To use AlterNET UI with Visual Studio, you need to install AlterNET UI extension for Visual Studio. This
extension adds a new project type - AlterNET UI Application and a new project item type - UIXML file.

Refer to our Visual Studio step-by-step tutorial for more details.

Visual Studio Code
You will need to use a command-line tool to download AlterNET UI project template and create AlterNET
UI application.

Refer to our command line step-by-step tutorial for more details.

AlterNET UI is published on NuGet.org as a package you can use in your .NET projects.

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://www.nuget.org/packages/Alternet.UI
https://www.nuget.org/packages/Alternet.UI
https://www.nuget.org/packages/Alternet.UI

3 / 70

Building Blocks
The basic building blocks of a typical AlterNET UI application are uncomplicated. One such class is
Application, which allows to start and stop an application, and a Window, which represents an on-screen
window to display UI elements inside it. A UI inside a Window is usually defined by a pair of the UIXML
markup code file and C# (code-behind) file with event handlers and programming logic.

UIXML markup code is very similar to XAML. Using UIXML follows an approach of separating visual
layout from code. The visual layout is then defined by a declarative UIXML document and the code-
behind files, which are written in C#. The application logic is implemented in these code-behind files.
This approach is inspired by WPF design and is proven by widespread industry use.

The following example shows how you can create a window with a few controls as part of a user
interface.

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
 <StackPanel>
 <Button Name="helloButton" Text="Say Hello" Margin="20" Click="HelloButton_Click" />
 </StackPanel>
</Window>

using System;
using Alternet.UI;

namespace HelloWorld
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void HelloButton_Click(object? sender, EventArgs e)
 {
 MessageBox.Show("Hello, world!");
 }
 }
}

4 / 70

Here is how this application looks on different operating systems:

5 / 70

6 / 70

Explore more examples on GitHub .

https://github.com/alternetsoft/alternet-ui-examples
https://github.com/alternetsoft/alternet-ui-examples
https://github.com/alternetsoft/alternet-ui-examples

7 / 70

Controls
AlterNET UI provides a set of standard controls which use native API and look and feel precisely like
native elements on all platforms and different screen resolutions.

Examples of how a ListBox can look on different platforms:

Windows macOS Linux

AlterNET UI provides the following core controls:

Containers: Grid, StackPanel, VerticalStackPanel, HorizontalStackPanel, GroupBox, Border, TabControl,
SplittedPanel, LayoutPanel.

These controls act as containers for other controls and provide a different kinds of layouts in your
windows.

A ScrollViewer is a special kind of container which makes its child controls scrollable.

Inputs controls: Button, CheckBox, ComboBox, RadioButton, NumericUpDown, TextBox, DateTimePicker
and Slider.

These controls most often detect and respond to user input. The control classes expose API to handle
text and mouse input, focus management, and more.

Data display: ListBox, ListView, TreeView, CheckListBox, VirtualListBox, PropertyGrid.

These controls provide a visual representation of data elements in different layouts or views.

Html display: WebBrowser.

This control may be used to render full featured web documents.

Informational: Label, ProgressBar.

These controls are designed to present information to the user in a visual form.

8 / 70

In AlterNET UI, each control is defined within a rectangle that represents its boundaries. The actual size
of this rectangle is calculated by the layout system at runtime using automatic measurements based on
the available screen size, parent properties, and element properties such as border, width, height,
margin, and padding.

9 / 70

Layout
This topic describes the AlterNET UI layout system. Understanding how and when layout calculations
occur is essential for creating user interfaces in AlterNET UI.

Control Bounding Boxes
When thinking about layout in AlterNET UI, it is important to understand the bounding box that
surrounds all controls. Each Control consumed by the layout system can be thought of as a rectangle
that is slotted into the layout. The size of the rectangle is determined by calculating the available screen
space, the size of any constraints, layout-specific properties (such as margin and padding), and the
individual behavior of the parent control. By processing this data, the layout system can calculate the
position of all the children of a particular Control. It is important to remember that sizing characteristics,
defined on the parent control, such as a Border, affect its children.

The following illustration shows a simple layout.

This layout can be achieved by using the following UIXML.

A Label control is hosted within a Grid. While the text fills only the upper-left corner of the first column,
the allocated space for the containing Border is actually much larger. The bounding box of any Control

<Grid Name="myGrid" Height="150">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="250"/>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Border Name="border1" Grid.Column="0" Grid.Row="0" BorderBrush="{x:Null}">
 <Label Margin="5" Text="Hello World!" />
 </Border>
 <Button Width="125" Height="25" Grid.Column="0" Grid.Row="1" Text="Show Bounding Box"
Click="ShowBoundingBoxButton_Click" />
 <Label Name="txt2" Grid.Column="1" Grid.Row="2"/>
</Grid>

10 / 70

can be retrieved by using the Bounds method. The following illustration shows the bounding box for the
Label control.

As shown by the orange rectangle, the allocated space for the Label control is actually much larger than
it appears. As additional controls are added to the Grid, this allocation could shrink or expand,
depending on the type and size of controls that are added.

The layout bounds of the Border are highlighted by setting the BorderColor property.

The Layout System
At its simplest, the layout is a recursive system that leads to control being sized, positioned, and drawn.
More specifically, layout describes the process of measuring and arranging the members of a Control's
Children collection. The layout is an intensive process. The larger the Children collection, the greater the
number of calculations that must be made. Complexity can also be introduced based on the layout
behavior defined by the Control control that owns the collection. A relatively simple layout Control, such
as Border, can have significantly better performance than a more complex Control, such as Grid.

Each time that a child Control changes its position, it has the potential to trigger a new pass by the
layout system. Therefore, it is important to understand the events that can invoke the layout system, as
unnecessary invocation can lead to poor application performance. The following describes the process
that occurs when the layout system is invoked.

1. A child Control generally begins the layout process by first measuring itself by having its core sizing
properties evaluated, such as Width, SuggestedWidth, SuggestedHeight, Height, and Margin.

2. After that, a custom GetPreferredSize implementation may change the desired control's size.

3. Layout using Dock property.

4. Layout Control-specific logic is applied, such as StackPanel's OnLayout logic and its related
properties, such as Orientation.

private void ShowBoundingBoxButton_Click(object? sender, EventArgs e)
{
 border1.BorderBrush = Brushes.Orange;
 txt2.Text = border1.Bounds.ToString();
}

11 / 70

5. The control bounds are set after all children have been measured and laid out.

6. The process is invoked again if additional Children are added to the collection, or the PerformLayout
method is called.

Measuring and Positioning Children
The layout system typically performs two operations for each member of the Children collection, a
measure and a layout. Each child Control provides its own GetPreferredSize and OnLayout methods to
achieve its own specific layout behavior.

By default, a control provides a base measure and layout logic. It considers several base control inputs to
perform its operation.

First, native size properties of the Control are evaluated, such as Visible. Secondly, the properties which
affect the value of the control's preferred size are processed. These properties generally describe the
sizing characteristics of the underlying Control, such as its Height, Width, Margin, Padding, Layout, Dock,
HorizontalAlignment, and VerticalAlignment. Each of these properties can change the space that is
necessary to display the control.

The ultimate goal of the measurement process is for the child to determine its preferred size, which
occurs during the GetPreferredSize call.

During the layout process, the parent Control control generates a rectangle that represents the bounds
of the child. This value is set to the Bounds property.

The layout logic evaluates the preferred size of the child and evaluates any additional properties that
may affect the actual size of the control, such as margin and alignment, and puts the child within its
layout slot. The child does not have to (and frequently does not) fill the entire allocated space. After that,
the layout process is complete.

Standard Layout Controls
AlterNET UI includes a group of controls that enable complex layouts. For example, stacking controls can
easily be achieved by using the StackPanel control, while more complex layouts are possible by using a
Grid.

The following table summarizes the available layout controls.

Control name Description

Grid Defines a flexible grid area that consists of columns and rows.

12 / 70

Control name Description

StackPanel Arranges child controls into a single line that can be oriented horizontally or
vertically.

VerticalStackPanel Arranges child controls into a single line that can be oriented vertically.

HorizontalStack
Panel

Arranges child controls into a single line that can be oriented horizontally.

SplittedPanel Manages subcontrols which are aligned to the sides with splitter control
between them.

LayoutPanel Arranges child controls using different methods.

Splitter Provides resizing of docked controls.

Custom Layout Behaviors
For applications that require a layout that is not possible by using any of the predefined controls, custom
layout behaviors can be achieved using one of these approaches:

Set Layout property.

Inherit from Control and override the GetPreferredSize and OnLayout methods.

Implement CustomLayout event handler.

Implement GlobalOnLayout and/or GlobalGetPreferredSize event handlers.

13 / 70

Input Overview
This article explains the architecture of the input systems in AlteNET UI.

Input API
The primary input API exposure is found on the base element classes: UIElement, FrameworkElement and
Control. These classes provide functionality for input events related to key presses, mouse buttons,
mouse-wheel, mouse movement, focus management, and mouse capture, to name a few. By placing the
input API on the base elements, rather than treating all input events as a service, the input architecture
enables the input events to be sourced by a particular object in the UI and to support an event routing
scheme whereby more than one element has an opportunity to handle an input event.

Keyboard and Mouse Classes
In addition to the input API on the base element classes, the Keyboard class and Mouse classes provide
additional API for working with keyboard and mouse input.

Examples of input API on the Keyboard class are the Modifiers property, which returns the ModifierKeys
currently pressed, and the IsKeyDown method, which determines whether a specified key is pressed.

The following example uses the GetKeyStates method to determine if a Key is in the down state.

An example of input API on the Mouse class is MiddleButton, which obtains the state of the middle
mouse button.

The following example determines whether the LeftButton on the mouse is in the Pressed state.

The Mouse and Keyboard classes are covered in more detail throughout this overview.

// Uses the Keyboard.GetKeyStates to determine if a key is down.
// A bitwise AND operation is used in the comparison.
// e is an instance of KeyEventArgs.
if ((Keyboard.GetKeyStates(Key.Enter) & KeyStates.Down) > 0)
{
 btnNone.Background = Brushes.Red;
}

if (Mouse.LeftButton == MouseButtonState.Pressed)
{
 UpdateSampleResults("Left Button Pressed");
}

14 / 70

Event Routing
A FrameworkElement can contain other elements as child elements in its content model, forming a tree
of elements. In AlterNET UI, the parent element can participate in input directed to its child elements or
other descendants by handing events. This is especially useful for building controls out of smaller
controls, a process known as "control composition" or "compositing."

Event routing is the process of forwarding events to multiple elements so that a particular object or
element along the route can choose to offer a significant response (through handling) to an event that
might have been sourced by a different element.

Routed events use one of three routing mechanisms: direct, bubbling, and tunneling. In direct routing,
the source element is the only element notified, and the event is not routed to any other elements.
However, the direct routed event still offers some additional capabilities that are only present for routed
events as opposed to standard CLR events. Bubbling works up the element tree by first notifying the
element that sourced the event, then the parent element, and so on. Tunneling starts at the root of the
element tree and works down, ending with the original source element.

Handling Input Events
To handle an element's input, an event handler must be associated with that particular event. In UIXML
this is straightforward: you reference the name of the event as an attribute of the element that will be
listening for this event. Then, you set the value of the attribute to the name of the event handler that you
define, based on a delegate. The event handler must be written in code such as C# and can be included
in a code-behind file.

Keyboard events occur when the operating system reports key actions that occur while the keyboard
focus is on an element. Mouse and stylus events each fall into two categories: events that report changes
in pointer position relative to the element and events that report changes in the state of device buttons.

Keyboard Input Event Example
The following example listens for a left arrow key press. A StackPanel is created that has a Button. An
event handler to listen for the left arrow key press is attached to the Button instance.

The first section of the example creates the StackPanel and the Button and attaches the event handler for
the KeyDown.

<StackPanel>
 <Button Background="AliceBlue"
 KeyDown="OnButtonKeyDown"
 Text="Button1"/>
</StackPanel>

15 / 70

The second section is written in code and defines the event handler. When the left arrow key is pressed,
and the Button has keyboard focus, the handler runs and the Background color of the Button is changed.
If the key is pressed, but it is not the left arrow key, the Background color of the Button is changed back
to its starting color.

Mouse Input Event Example
In the following example, the Background color of a Button is changed when the mouse pointer enters
the Button. The Background color is restored when the mouse leaves the Button.

The first section of the example creates the StackPanel and the Button control and attaches the event
handlers for the MouseEnter and MouseLeave events to the Button.

// Create the UI elements.
StackPanel keyboardStackPanel = new StackPanel();
Button keyboardButton1 = new Button();

// Set properties on Buttons.
keyboardButton1.Background = Brushes.AliceBlue;
keyboardButton1.Text = "Button 1";

// Attach Buttons to StackPanel.
keyboardStackPanel.Children.Add(keyboardButton1);

// Attach event handler.
keyboardButton1.KeyDown += new KeyEventHandler(OnButtonKeyDown);

private void OnButtonKeyDown(object sender, KeyEventArgs e)
{
 Button source = e.Source as Button;
 if (source != null)
 {
 if (e.Key == Key.Left)
 {
 source.Background = Brushes.LemonChiffon;
 }
 else
 {
 source.Background = Brushes.AliceBlue;
 }
 }
}

16 / 70

The second section of the example is written in code and defines the event handlers. When the mouse
enters the Button, the Background color of the Button is changed to SlateGray. When the mouse leaves
the Button, the Background color of the Button is changed back to AliceBlue.

<StackPanel>
 <Button Background="AliceBlue"
 MouseEnter="OnMouseExampleMouseEnter"
 MouseLeave="OnMosueExampleMouseLeave"
 Text="Button">
 </Button>
</StackPanel>

// Create the UI elements.
StackPanel mouseMoveStackPanel = new StackPanel();
Button mouseMoveButton = new Button();

// Set properties on Button.
mouseMoveButton.Background = Brushes.AliceBlue;
mouseMoveButton.Text = "Button";

// Attach Buttons to StackPanel.
mouseMoveStackPanel.Children.Add(mouseMoveButton);

// Attach event handler.
mouseMoveButton.MouseEnter += new MouseEventHandler(OnMouseExampleMouseEnter);
mouseMoveButton.MouseLeave += new MouseEventHandler(OnMosueExampleMouseLeave);

private void OnMouseExampleMouseEnter(object sender, MouseEventArgs e)
{
 // Cast the source of the event to a Button.
 Button source = e.Source as Button;

 // If source is a Button.
 if (source != null)
 {
 source.Background = Brushes.SlateGray;
 }
}

private void OnMosueExampleMouseLeave(object sender, MouseEventArgs e)
{
 // Cast the source of the event to a Button.

17 / 70

Text Input
The KeyPress event enables you to listen for text input in a device-independent manner. The keyboard is
the primary means of text input, but speech, handwriting, and other input devices can generate text
input also.

For keyboard input, AlterNET UI first sends the appropriate KeyDown/KeyUp events. If those events are
not handled, and the key is textual (rather than a control key such as directional arrows or function keys),
then a KeyPress event is raised. There is not always a simple one-to-one mapping between KeyDown/Key
Up and KeyPress events because multiple keystrokes can generate a single character of text input, and
single keystrokes can generate multi-character strings. This is especially true for languages such as
Chinese, Japanese, and Korean, which use Input Method Editors (IMEs) to generate the thousands of
possible characters in their corresponding alphabets.

The following example defines a handler for the Click event and a handler for the KeyDown event.

The first segment of code or markup creates the user interface.

 Button source = e.Source as Button;

 // If source is a Button.
 if (source != null)
 {
 source.Background = Brushes.AliceBlue;
 }
}

<StackPanel KeyDown="OnTextInputKeyDown">
 <Button Click="OnTextInputButtonClick" Text="Open" />
 <TextBox />
</StackPanel>

// Create the UI elements.
StackPanel textInputStackPanel = new StackPanel();
Button textInputButton = new Button();
TextBox textInputTextBox = new TextBox();
textInputButton.Text = "Open";

// Attach elements to StackPanel.
textInputStackPanel.Children.Add(textInputeButton);
textInputStackPanel.Children.Add(textInputTextBox);

// Attach event handlers.

18 / 70

The second segment of the code contains the event handlers.

Because input events bubble up the event route, the StackPanel receives the input regardless of which
element has keyboard focus. The TextBox control is notified first, and the OnTextInputKeyDown handler is
called only if the TextBox did not handle the input.

Mouse Position
The AlterNET UI input API provides helpful information with regard to coordinate spaces. For example,
coordinate (0,0) is the upper-left coordinate, but the upper-left of which element in the tree? The
element that is the input target? The element you attached your event handler to? Or something else? To
avoid confusion, the AlterNET UI input API requires that you specify your frame of reference when you
work with coordinates obtained through the mouse. The GetPosition method returns the coordinate of
the mouse pointer relative to the specified element.

Mouse Capture
Mouse devices specifically hold a modal characteristic known as mouse capture. Mouse capture is used
to maintain a transitional input state when a drag-and-drop operation is started so that other operations
involving the nominal on-screen position of the mouse pointer do not necessarily occur. During the

textInputStackPanel.KeyDown += new KeyEventHandler(OnTextInputKeyDown);
textInputButton.Click += new RoutedEventHandler(OnTextInputButtonClick);

private void OnTextInputKeyDown(object sender, KeyEventArgs e)
{
 if (e.Key == Key.O && Keyboard.Modifiers == ModifierKeys.Control)
 {
 Handle();
 e.Handled = true;
 }
}

private void OnTextInputButtonClick(object sender, EventArgs e)
{
 Handle();
 e.Handled = true;
}

public void Handle()
{
 MessageBox.Show("Pretend this opens a file");
}

19 / 70

drag, the user cannot click without aborting the drag-and-drop, which makes most mouseover cues
inappropriate while the mouse capture is held by the drag origin. The input system exposes APIs that can
determine the mouse capture state, as well as APIs that can force mouse capture to a specific element or
clear the mouse capture state.

The Input System and Base Elements
Input events such as the attached events defined by the Mouse and Keyboard classes are raised by the
input system and injected into a particular position in the object model based on hit testing the visual
tree at run time.

Each of the events that Mouse and Keyboard define as an attached event is also re-exposed by the base
element class UIElement as a new routed event. The base element routed events are generated by
classes handling the original attached event and reusing the event data.

When the input event becomes associated with a particular source element through its base element
input event implementation, it can be routed through the remainder of an event route that is based on a
combination of logical and visual tree objects, and be handled by application code. Generally, it is more
convenient to handle these device-related input events using the routed events on UIElement, because
you can use more intuitive event handler syntax both in UIXML and in code. You could choose to handle
the attached event that initiated the process instead, but you would face several issues: the attached
event may be marked handled by the base element class handling, and you need to use the accessor
methods rather than true event syntax in order to attach handlers for attached events.

20 / 70

Menu
AlterNET UI allows building menus on all the platforms it supports; see the screenshots below.

Windows macOS Linux

The Menu and MainMenu classes enable you to organize elements associated with commands and event
handlers in a hierarchical order. Each Menu element contains a collection of MenuItem elements.

Menu Control
The Menu control presents a list of items that specify commands or options for an application. Typically,
clicking a MenuItem opens a submenu or causes an application to execute a command.

Creating Menus
The following example creates a MainMenu with Menu items inside. The Menu contains MenuItem
objects that use the Command, Text, Checked properties and the Click event.

<Window.Menu>
 <MainMenu>
 <MenuItem Text="_File">
 <MenuItem Text="_Open..." Name="openMenuItem" Click="OpenMenuItem_Click"
Shortcut="Ctrl+O"/>
 <MenuItem Text="_Save..." Name="saveMenuItem" Command="{Binding SaveCommand}"/>
 <MenuItem Text="-" Name="separatorMenuItem" />
 <MenuItem Text="E_xit" Name="exitMenuItem" Click="ExitMenuItem_Click" />
 </MenuItem>

21 / 70

MenuItems with Keyboard Shortcuts
Keyboard shortcuts are character combinations that can be entered with the keyboard to invoke Menu
commands. For example, the shortcut for Copy is CTRL+C. To assign a keyboard shortcut to a menu
item, use the Shortcut property.

MenuItem roles for macOS application menu support
On macOS, by the system UI guidelines, the About, Quit, and Preferences items must be placed into
the application (the leftmost) menu. They also should have standard names and keyboard shortcuts. On
Windows and Linux, these items are usually located in different menus, like Help, File, and Tools. As
many applications include these menu items, AlterNET UI provides automatic role-based menu item
location adjustment on macOS. Usually, the developer does not have to do anything, as the framework
automatically deduces item roles from the menu item names and relocates them to the required menu
on macOS. For cases when more fine control is required, please use Role property, and MenuItemRoles
class.

 <MenuItem Text="_View">
 <MenuItem Text="_Grid" Checked="True" Name="gridMenuItem" Click="GridMenuItem_Click"/>
 </MenuItem>
 </MainMenu>
</Window.Menu>

public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();

 DataContext = this;
 SaveCommand = new Command(o => MessageBox.Show("Save"));
 }

 public Command SaveCommand { get; }

 private void OpenMenuItem_Click(object sender, EventArgs e) => MessageBox.Show("Open");

 private void GridMenuItem_Click(object sender, EventArgs e) => MessageBox.Show("Grid
item is checked: " + gridMenuItem.Checked);

 private void ExitMenuItem_Click(object sender, EventArgs e) => Close();
}

22 / 70

Using StatusBar
The AlterNET UI StatusBar control is used as an area, usually displayed at the bottom of a window, where
an application can display various status information. StatusBar controls can have status bar panels that
display text to indicate the state of the open document; for example, that the document is modified.

Windows macOS Linux

Using the StatusBar Control
Internet Explorer uses a status bar to indicate the URL of a page when the mouse rolls over the hyperlink;
Microsoft Word gives you information on page location, section location, and editing modes such as
overtype and revision tracking; and Visual Studio uses the status bar to provide context-sensitive
information, such as telling you how to manipulate dockable windows as either docked or floating.

A status bar is divided into panels to display information using the Panels property. The StatusBar control
allows you to create status bar panels by adding StatusBarPanel objects to a Panels collection. Each
StatusBarPanel object should have Text assigned to be displayed in the status bar.

Working with the StatusBar Control
The following example shows how to use StatusBar component:

<Window>
 <Window.StatusBar>
 <StatusBar Name="statusBar">
 <StatusBarPanel Text="Ready" />
 <StatusBarPanel Name="clockStatusBarPanel" />
 </StatusBar>
 </Window.StatusBar>
</Window>

Timer clockTimer;

public MainWindow()
{
 InitializeComponent();

23 / 70

 clockTimer = new Timer(TimeSpan.FromMilliseconds(200), (o, e) =>
clockStatusBarPanel.Text = DateTime.Now.ToString("HH:mm:ss"));
 clockTimer.Start();
}

24 / 70

Drag-and-Drop Support
You can enable user drag-and-drop operations within an AlterNET UI application by handling a series of
events, most notably the DragEnter, DragLeave, and DragDrop events.

Drag-and-drop events
There are two categories of events in a drag-and-drop operation: events that occur on the current target
of the drag-and-drop operation and events that occur on the source of the drag-and-drop operation. To
perform drag-and-drop operations, you must handle these events. By working with the information
available in the event arguments of these events, you can easily facilitate drag-and-drop operations.

Events on the current drop target
The following table shows the events that occur on the current target of a drag-and-drop operation.

Mouse
Event Description

DragEnter This event occurs when an object is dragged into the control's bounds. The handler for
this event receives an argument of type DragEventArgs.

DragOver This event occurs when an object is dragged while the mouse pointer is within the
control's bounds. The handler for this event receives an argument of type DragEventArgs.

DragDrop This event occurs when a drag-and-drop operation is completed. The handler for this
event receives an argument of type DragEventArgs.

Drag
Leave

This event occurs when an object is dragged out of the control's bounds. The handler for
this event receives an argument of type EventArgs .

The DragEventArgs class provides the location of the mouse pointer, the current state of the mouse
buttons and modifier keys of the keyboard, the data being dragged, and DragDropEffects values that
specify the operations allowed by the source of the drag event and the target drop effect for the
operation.

Performing drag-and-drop
Drag-and-drop operations always involve two components, the drag source and the drop target. To
start a drag-and-drop operation, designate a control as the source and handle the MouseDown event. In
the event handler, call the DoDragDrop method providing the data associated with the drop and the a
DragDropEffects value.

https://learn.microsoft.com/dotnet/api/system.eventargs
https://learn.microsoft.com/dotnet/api/system.eventargs
https://learn.microsoft.com/dotnet/api/system.eventargs

25 / 70

Set the target control's AllowDrop property set to true to allow that control to accept a drag-and-drop
operation. The target handles two events. First, an event in response to the drag being over the control,
such as DragOver. And a second event which is the drop action itself, DragDrop.

The following example demonstrates a drag from a Label control to a TextBox. When the drag is
completed, the TextBox responds by assigning the label's text to itself.

Dragging Data
All drag-and-drop operations begin with dragging. The functionality to enable data to be collected when
dragging begins is implemented in the DoDragDrop method.

In the following example, the MouseDown event is used to start the drag operation because it is the
most intuitive (most drag-and-drop actions begin with the mouse button being pressed). However,
remember that any event could be used to initiate a drag-and-drop procedure.

To start a drag operation
1. In the MouseDown event for the control where the drag will begin use the DoDragDrop method to set

the data to be dragged and the allowed effect dragging will have. For more information, see Data
and Effect.

The following example shows how to initiate a drag operation. The control where the drag begins is a
Button control, the data being dragged is the string representing the Text property of the Button control,
and the allowed effects are either copying or moving.

textBox1.AllowDrop = true;
// ...

// Initiate the drag
private void label1_MouseDown(object sender, MouseEventArgs e) =>
 DoDragDrop(((Label)sender).Text, DragDropEffects.Copy);

// Set the effect filter and allow the drop on this control
private void textBox1_DragOver(object sender, DragEventArgs e) =>
 e.Effect = DragDropEffects.Copy;

// React to the drop on this control
private void textBox1_DragDrop(object sender, DragEventArgs e) =>
 textBox1.Text = (string)e.Data.GetData(DataFormats.Text);

private void button1_MouseDown(object sender, Alternet.UI.MouseEventArgs e)
{

26 / 70

Dropping Data
Once you have begun dragging data from a location on a window or control, you will naturally want to
drop it somewhere. The cursor will change when it crosses an area of a window or control that is
correctly configured for dropping data. Any area within a window or control can be made to accept
dropped data by setting the AllowDrop property and handling the DragEnter and DragDrop events.

To perform a drop
1. Set the AllowDrop property to true.

2. In the DragEnter event for the control where the drop will occur, ensure that the data being dragged
is of an acceptable type (in this case, Text). The code then sets the effect that will happen when the
drop occurs to a value in the DragDropEffects enumeration. For more information, see Effect.

3. In the DragDrop event for the control where the drop will occur, use the GetData method to retrieve
the data being dragged.

In the example below, a TextBox control is the control being dragged to (where the drop will occur).
The code sets the Text property of the TextBox control equal to the data being dragged.

 button1.DoDragDrop(button1.Text, DragDropEffects.Copy |
 DragDropEffects.Move);
}

private void textBox1_DragEnter(object sender, Alternet.UI.DragEventArgs e)
{
 if (e.Data.GetDataPresent(DataFormats.Text))
 e.Effect = DragDropEffects.Copy;
 else
 e.Effect = DragDropEffects.None;
}

private void textBox1_DragDrop(object sender, Alternet.UI.DragEventArgs e)
{
 textBox1.Text = e.Data.GetData(DataFormats.Text).ToString();
}

27 / 70

Clipboard Support
You can implement user cut/copy/paste support and user data transfer to the Clipboard within your
AlterNET UI applications by using simple method calls.

The Clipboard class provides methods that you can use to interact with the operating system Clipboard
feature. Many applications use the Clipboard as a temporary repository for data. For example, word
processors use the Clipboard during cut-and-paste operations. The Clipboard is also useful for
transferring data from one application to another.

Add Data to the Clipboard
When you add data to the Clipboard, you can indicate the data format so that other applications can
recognize the data if they can use that format. You can also add data to the Clipboard in multiple
different formats to increase the number of other applications that can potentially use the data.

A Clipboard format is a string that identifies the format so that an application that uses that format can
retrieve the associated data. The DataFormats class provides predefined format names for your use. You
can also use your own format names or use the type of an object as its format.

To add data to the Clipboard in one or multiple formats, use the SetDataObject method. You can pass
any object to this method, but to add data in multiple formats, you must first add the data to a separate
object designed to work with multiple formats. Typically, you will add your data to a DataObject, but you
can use any type that implements the IDataObject interface.

The following sample illustrates how to add textual data to the Clipboard:

The sample below illustrates how to add data in multiple formats to the Clipboard:

NOTE

All applications in an OS environment share the Clipboard. Therefore, the contents are subject to
change when you switch to another application.

private void CopyButton_Click(object sender, System.EventArgs e)
{
 Clipboard.SetText("my string");
}

private void CopyButton_Click(object sender, System.EventArgs e)
{

28 / 70

Retrieve Data from the Clipboard
Some applications store data on the Clipboard in multiple formats to increase the number of other
applications that can potentially use the data. A Clipboard format is a string that identifies the format. An
application that uses the identified format can retrieve the associated data on the Clipboard. The Data
Formats class provides predefined format names for your use. You can also use your own format names
or use an object's type as its format.

To determine whether the Clipboard contains data in a particular format, use one of the ContainsFormat
methods or the GetData method. To retrieve data from the Clipboard, use one of the GetFormat methods
or the GetData method.

The following sample illustrates how to retrieve data from the Clipboard:

 var data = new DataObject();
 data.SetData(DataFormats.Text, "my text string");
 data.SetData(DataFormats.Files, new[] { "c:\\myfile.txt" });

 Clipboard.SetDataObject(data);
}

private void PasteButton_Click(object sender, System.EventArgs e)
{
 if (Clipboard.ContainsText)
 MessageBox.Show("Text from the clipboard: " + Clipboard.GetText());

 if (Clipboard.ContainsData(DataFormats.Files))
 {
 string[]? fileNames = Clipboard.GetFiles();
 // Process the file names here.
 }
}

29 / 70

Rendering Graphics
Overview
AlterNET UI includes a set of resolution-independent graphics features that use native rendering on
every supported platform.

It supports rendering graphic primitives such as text, images, and graphic shapes with different fonts,
pens, and brushes.

The following code example illustrates how graphics can be drawn in a UI element:

using Alternet.Drawing;
using Alternet.UI;

namespace DrawingContextTutorial
{
 public class DrawingControl : Control
 {
 public DrawingControl()
 {
 UserPaint = true;
 }

 protected override void OnPaint(PaintEventArgs e)
 {
 e.DrawingContext.FillRectangle(Brushes.LightBlue, e.Bounds);

 for (int size = 10; size < 200; size += 10)
 e.DrawingContext.DrawEllipse(Pens.Red, new(10, 10, size, size));
 }
 }
}

30 / 70

Refer to our blog post to see it in action.

Drawing Context Features
Our Drawing Sample illustrates the features AlterNET UI provides for rendering graphics. Below is a list
of the features that Graphics provides, grouped by category. The screenshots are taken from the
Drawing Sample .

Geometric Shapes
Graphics class provides means to draw a variety of geometric shapes:

https://www.alternet-ui.com/blog/drawing-context-tutorial
https://www.alternet-ui.com/blog/drawing-context-tutorial
https://www.alternet-ui.com/blog/drawing-context-tutorial
https://github.com/alternetsoft/alternet-ui-examples/tree/main/DrawingSample
https://github.com/alternetsoft/alternet-ui-examples/tree/main/DrawingSample
https://github.com/alternetsoft/alternet-ui-examples/tree/main/DrawingSample
https://github.com/alternetsoft/alternet-ui-examples/tree/main/DrawingSample
https://github.com/alternetsoft/alternet-ui-examples/tree/main/DrawingSample
https://github.com/alternetsoft/alternet-ui-examples/tree/main/DrawingSample

31 / 70

Lines: DrawLine, DrawLines
Polygons: DrawPolygon, FillPolygon
Rectangles: DrawRectangle, FillRectangle, DrawRectangles, FillRectangles
Rounded rectangles: DrawRoundedRectangle, FillRoundedRectangle
Circles and ellipses: DrawCircle, FillCircle, DrawEllipse, FillEllipse
Curves: DrawBezier, DrawBeziers
Arcs and pies: DrawArc, DrawPie, FillPie

Text
Graphics allows to draw text with the specified Font, bounds, and TextWrapping, TextTrimming, Text
HorizontalAlignment and TextVerticalAlignment:

32 / 70

Here is an example of how to draw a wrapped, trimmed, and aligned text string:

Brushes and Pens
You can draw geometry with different stroke and fill styles provided by the Brush and Pen objects:

dc.DrawText(
 "My example text",
 Control.DefaultFont,
 Brushes.Black,
 new Rect(10, 10, 100, 100),
 new TextFormat
 {
 HorizontalAlignment = TextHorizontalAlignment.Center,
 VerticalAlignment = TextVerticalAlignment.Top,
 Wrapping = TextWrapping.Word,
 Trimming = TextTrimming.Character
 });

33 / 70

Below are the parts of the API responsible for different pen stroke styles:

Solid lines: create an object of the Pen class with a constructor that takes a Color and line thickness
value.
Dashed lines: create an object of the Pen class with a constructor that takes a DashStyle, or set the
DashStyle property.
LineCap and LineJoin enumerations provide different line cap and line join styles.

The following classes allow you to fill geometry with different fill styles:

Solid fill: use SolidBrush
Gradient fill: use RadialGradientBrush and LinearGradientBrush
Pattern fill: use HatchBrush

GraphicsPath
GraphicsPath class provides a way to stroke and fill geometric shapes defined with a series of connected
lines and curves:

34 / 70

Here are the types of segments supported by the GraphicsPath:

Lines: AddLine, AddLines, AddLineTo
Curves: AddBezier, AddBezierTo, AddArc
Geometric shapes: AddEllipse, AddRectangle, AddRoundedRectangle

Transforms
TransformMatrix provides a way to set geometric transform to a Graphics:

35 / 70

The transforms can include translation, rotation, and scale (see the CreateTranslation, CreateRotation and
CreateScale methods). Use the Transform property of Graphics to set the current transform. The
transforms can be applied sequentially with a stack-like approach, using the PushTransform and Pop
methods.

Clip Regions
Region class provides a way to set clip region to a Graphics:

36 / 70

Use the Clip property of Graphics to set the current clip region.

Drawing Images
Image class encapsulate a graphical image. DrawImage method overloads provide several ways of
drawing images with a specified InterpolationMode:

37 / 70

38 / 70

Printing Overview
Printing in AlterNET UI consists primarily of using the PrintDocument component to enable the user to
print. The PrintPreviewDialog control, PrintDialog and PageSetupDialog components provide a familiar
graphical interface to users.

The PrintDialog component is a pre-configured dialog box used to select a printer, choose the pages to
print, and determine other print-related settings in UI applications. It's a simple solution for printer and
print-related settings instead of configuring your own dialog box. You can enable users to print many
parts of their documents: print all, print a selected page range, or print a selection. By relying on
standard dialog boxes, you create applications whose basic functionality is immediately familiar to users.
The PrintDialog component inherits from the CommonDialog class.

Typically, you create a new instance of the PrintDocument component and set the properties that
describe what to print using the PrinterSettings and PageSettings classes. Calling the Print method prints
the document.

Working with the component
Use the PrintDialog.ShowModal method to display the dialog at run time. This component has
properties that relate to either a single print job (PrintDocument class) or the settings of an individual
printer (PrinterSettings class). One of the two, in turn, may be shared by multiple printers.

How to capture user input from a PrintDialog at run time
You can set options related to printing at design time. Sometimes you may want to change these options
at run time, most likely because of choices made by the user. You can capture user input for printing a
document using the PrintDialog and the PrintDocument components. The following steps demonstrate
displaying the print dialog for a document:

1. Add a PrintDialog and a PrintDocument component to your form.

2. Set the Document property of the PrintDialog to the PrintDocument added to the form.

3. Display the PrintDialog component by using the ShowModal method.

printDialog1.Document = printDocument1;

// display show dialog, and if the user selects "Ok" the document is printed
if (printDialog1.ShowDialog() == DialogResult.OK)
 printDocument1.Print();

39 / 70

4. The user's printing choices from the dialog will be copied to the PrinterSettings property of the Print
Document component.

How to create print jobs
The foundation of printing in AlterNET UI is the PrintDocument component, more specifically, the Print
Page event. By writing code to handle the PrintPage event, you can specify what to print and how to
print it. The following steps demonstrate creating a print job:

1. Add a PrintDocument component to your form.

2. Write code to handle the PrintPage event.

You'll have to code your own printing logic. Additionally, you'll have to specify the material to be
printed.

As a material to print, in the following code example, a sample graphic in the shape of a red
rectangle is created in the PrintPage event handler.

You can also write code for the BeginPrint and EndPrint events. It will help to include an integer
representing the total number of pages to print that is decremented as each page prints.

For more information about the specifics of AlterNET UI print jobs, including how to create a print job
programmatically, see PrintPageEventArgs.

private void PrintDocument1_PrintPage(object sender,
System.Drawing.Printing.PrintPageEventArgs e) =>
 e.Graphics.FillRectangle(Brushes.Red, new Rectangle(100, 100, 100, 100));

40 / 70

Using Resource URIs
In AlterNET UI, uniform resource identifiers (URIs) are used to identify and load files in the following
scenarios:

Loading images.

Loading data files.

Any other scenario when read-only access to a resource file is required.

Using embres: Scheme
embres: scheme is used to load an embedded resource from an assembly. The URIs in this scheme have
the following format:

The following is an example of using an image from a resource embedded into the current assembly :

The resource in the example above is embedded into the assembly in the following way (an excerpt from
the .csproj file):

The EmployeeFormSample part of the manifest resource name comes from the assembly root namespace,
which is the same as the assembly name by default.

Using file: Scheme
file: scheme is used to load a file. The URIs in this scheme have the following format:

Linux:
These urls point to the same file /etc/fstab:

embres:Manifest.Resource.Name[?assembly=assembly-name]

<PictureBox Image="embres:EmployeeFormSample.Resources.EmployeePhoto.jpg" />

<ItemGroup>
 <EmbeddedResource Include="Resources\EmployeePhoto.jpg" />
</ItemGroup>

file://<host>/<path>

41 / 70

Mac OS:
These urls point to the same file /var/log/system.log:

Windows:
These urls point to the same file c:\WINDOWS\clock.avi:

file://localhost/etc/fstab
file:///etc/fstab
file:///etc/./fstab
file:///etc/../etc/fstab

file://localhost/var/log/system.log
file:///var/log/system.log

file://localhost/c|/WINDOWS/clock.avi
file:///c|/WINDOWS/clock.avi
file://localhost/c:/WINDOWS/clock.avi
file:///c:/WINDOWS/clock.avi

42 / 70

Focus Management
AlterNET UI includes several API elements to control input focus.

Keyboard focus refers to the object that is receiving keyboard input. The element with keyboard focus
has Focused set to true. There can be only one element with keyboard focus on the entire desktop.

Keyboard focus can be obtained through user interaction with the UI, such as tabbing to an element or
clicking the mouse on certain elements. Keyboard focus can also be obtained programmatically by using
the SetFocus method.

The SetFocus method returns true if the control successfully received input focus. The control can have
the input focus while not displaying any visual cues of having the focus. This behavior is primarily
observed by the nonselectable controls listed below, or any controls derived from them.

When the user presses the TAB key, the input focus is set to the next control in the tab order. Controls
with the TabStop property value of false are not included in the collection of controls in the tab order.

When you change the focus by using the keyboard (TAB, SHIFT+TAB, and so on), by calling the SetFocus
or FocusNextControl methods focus events occur in the following order:

GotFocus
LostFocus

43 / 70

System Requirements
AlterNET UI supports the following .NET versions:

.NET 6.0 or newer

.NET Framework 4.62 or newer

The following operating systems are supported:

Windows 7 Service Pack 1 or newer
macOS 10.15 or newer
Linux (different distributions)

See this page for detailed information.

Microsoft Visual Studio 2022 is supported by the AlterNET UI Visual Studio Extension.

AlterNET UI also supports a development workflow with Visual Studio Code and dotnet command line
tools.

https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md
https://github.com/dotnet/core/blob/main/release-notes/6.0/supported-os.md

44 / 70

"Hello, World" with Visual Studio
In this tutorial, you will create a cross-platform desktop application using C# and Microsoft Visual Studio.
The application will display a message box in response to a button click.

Microsoft Visual Studio is supported on Windows OS only. To develop on macOS or Linux, see "Hello,
World" with Command-Line and VS Code.

Prerequisites
1. Install Microsoft Visual Studio . Visual Studio 2022 is supported.
2. Ensure the ".NET Desktop Development" or "ASP.NET and web development" workflow is installed.
3. Download and install AlterNET UI Visual Studio extension .

Create New Project
1. Open Visual Studio, and in the start window, select Create new project.

2. On the Create new project page, locate the AlterNET UI Application template. Select it, then click
Next.

3. On the Configure your new project page set the project name to HelloWorld and specify the
desired project location. When done, click Create.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022

45 / 70

4. The project will be created, and you will be presented with a development environment.

5. Press Ctrl+F5 to build and run the application. The application will start and display its window:

6. In Visual Studio, open MainWindow.uixml. In the editor, change the Title attribute value from
"HelloWorld" to "My First Application":

7. Press Ctrl+F5 to build and run the application and see its window title has changed accordingly.

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
</Window>

46 / 70

Add Button to the Window
1. In MainWindow.uixml, add the following markup:

2. Run the application by pressing Ctrl+F5:

Write Code to Respond to the Button Click
1. In MainWindow.uixml, add the Click attribute to the Button element like the following:

NOTE

By default, the created project will use .NET 6.0 as a target framework. If .NET 6.0 runtime is not
installed on your machine, you will be prompted to do so on the first application run.

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
 <StackPanel>
 <Button Name="helloButton" Text="Say Hello" Margin="20" />
 </StackPanel>
</Window>

47 / 70

This will bind the Click event to its handler, ' HelloButton_Click`.
2. In MainWindow.uixml.cs file, add the following HelloButton_Click method:

3. You can use IntelliSense features provided by the AlterNET UI Visual Studio Extension :

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
 <StackPanel>
 <Button Name="helloButton" Text="Say Hello" Margin="20" Click="HelloButton_Click" />
 </StackPanel>
</Window>

using System;
using Alternet.UI;

namespace HelloWorld
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void HelloButton_Click(object? sender, EventArgs e)
 {
 MessageBox.Show("Hello, world!");
 }
 }
}

https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022

48 / 70

4. Run the application, then click Say Hello button. The message box appears:

Congratulations, you have successfully completed the "Hello, World" tutorial using Microsoft Visual Studio.

NOTE

The application created in this tutorial can be compiled and run without modifications on all the
supported platforms: Windows, macOS, and Linux.

49 / 70

For a similar tutorial, but using command line tools and Visual Studio Code, see "Hello, World" with
Command-Line and Visual Studio Code.

50 / 70

"Hello, World" with Command-Line and Visual
Studio Code
In this tutorial, you will create a cross-platform desktop application using C#, .NET command line tools,
and Visual Studio Code. The application will display a message box in response to a button click.

Prerequisites
1. Download and install .NET SDK . The minimum supported SDK version is .NET 6.0.
2. Install AlterNET UI project templates by running

3. Download and install Visual Studio Code
4. In Visual Studio Code, ensure the C# extension is installed. For information about how to install

extensions on Visual Studio Code, see VS Code Extension Marketplace .
5. If you develop under Linux, please install required packages as described at the end of this page.

Create New Project
1. Create a new directory for your application; name it HelloWorld
2. Open the Command Prompt window (Terminal on macOS or Linux)
3. Navigate the terminal to the created directory:

4. Enter the following command to create a new project in the current directory:

5. The following files will be created:

6. Compile and run the created project by executing:

The application will start and display its window:

dotnet new install Alternet.UI.Templates

cd path/to/HelloWorld

dotnet new alternet-ui

HelloWorld.csproj
MainWindow.uixml
MainWindow.uixml.cs
Program.cs

dotnet run

https://dotnet.microsoft.com/download/dotnet
https://dotnet.microsoft.com/download/dotnet
https://dotnet.microsoft.com/download/dotnet
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery
https://code.visualstudio.com/docs/editor/extension-gallery

51 / 70

Open Project with Visual Studio Code

NOTE

By default, the created project will use .NET 6.0 as a target framework. If .NET 6.0 runtime is not
installed on your machine, you will be prompted to do so on the first application run.

NOTE

You can also create .cs/.uixml files for a new window from the console like this:

Where MyNewWindow is a name for a new window class, and Test1 is the created class namespace
name.

dotnet new alternet-ui-window -n MyNewWindow --namespace Test1

52 / 70

1. Start Visual Studio Code.

2. Select File > Open Folder (File > Open... on macOS) from the main menu.

3. In the Open Folder dialog, locate a HelloWorld folder and click Select Folder (Open on macOS).

4. The popup prompting Select 1 of 2 projects will appear at the top of the screen:

Select All contained projects.

5. After several seconds, a popup dialog with the message Required assets to build and debug are
missing from 'HelloWorld'. Add them? will appear at the bottom-right corner of the screen:

Select Yes. The .vscode subdirectory will be created with the workspace settings automatically set
up.

6. Now, you can debug your application by pressing F5 or run it without debugging by pressing
Ctrl+F5. The application will be built automatically if required.

7. Open MainWindow.uixml by clicking the corresponding item in the VS Code Explorer panel. In the
editor, change the Title attribute value from "HelloWorld" to "My First Application":

8. Press Ctrl+F5 to build and run the application and see its window title has changed accordingly.

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
</Window>

53 / 70

Uixml Syntax Highlight
In order to have syntax highlight in uixml, you need:

Create '.vscode' subfolder in you project folder.
Create there 'settings.json' file.
Edit 'settings.json' and add there 'files.associations' section:

Add Button to the Window
1. In MainWindow.uixml, add the following markup:

2. Run the application by pressing Ctrl+F5:

NOTE

For information and tutorials on general C# development and debugging with Visual Studio Code,
see the corresponding MSDN article .

{
"files.associations": {
 "*.uixml": "xml",
}

}

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
 <StackPanel>
 <Button Name="helloButton" Text="Say Hello" Margin="20" />
 </StackPanel>
</Window>

https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code
https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code
https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code

54 / 70

Write Code to Respond to the Button Click
1. In MainWindow.uixml, add the Click attribute to the Button element like the following:

This will bind the Click event to its handler, ' HelloButton_Click`.

2. In MainWindow.uixml.cs file, add the following HelloButton_Click method:

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="HelloWorld.MainWindow"
 Title="My First Application">
 <StackPanel>
 <Button Name="helloButton" Text="Say Hello" Margin="20" Click="HelloButton_Click" />
 </StackPanel>
</Window>

using System;
using Alternet.UI;

55 / 70

3. Run the application, then click Say Hello button. The message box appears:

namespace HelloWorld
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void HelloButton_Click(object? sender, EventArgs e)
 {
 MessageBox.Show("Hello, world!");
 }
 }
}

56 / 70

Linux
Before running Alternet.UI applications on Linux, you need to install required packages. There is special
installation script for Ubuntu. You can download it from the GitHub repository (File:
Install.Scripts/Ubuntu.Install.Packages.sh). This is development packages, end-users do not need to install
all of them.

Congratulations, you have completed the "Hello, World" tutorial using command line tools and Visual
Studio Code.

For a similar tutorial but using Visual Studio on Windows, see "Hello, World" with Visual Studio.

NOTE

The application created in this tutorial can be compiled and run without source code modifications
on all the supported platforms: Windows, macOS, and Linux.

https://github.com/alternetsoft/AlternetUI
https://github.com/alternetsoft/AlternetUI
https://github.com/alternetsoft/AlternetUI

57 / 70

Rendering with Graphics
This tutorial will teach you how to create a custom Control, which draws itself on the screen using
Graphics class.

1. Create a new AlterNET UI Application project, name it DrawingContextTutorial. For step-by-step
guidance on how to create a new AlterNET UI project, see "Hello, World" Tutorial.

2. Add a new empty class named DrawingControl to the project. Make the class public, and derive it
from Control:

3. Open MainWindow.uixml. Add the reference to the local namespace, and add a DrawingControl to the
window:

4. Compile and run the application. An empty window will appear. This is because DrawingControl does
not paint itself yet.

5. In the DrawingControl class, add a default constructor. In its body, set UserPaint property to true.
Also, override the OnPaint method:

using Alternet.UI;

namespace DrawingContextTutorial
{
 public class DrawingControl : Control
 {
 }
}

<Window xmlns="http://schemas.alternetsoft.com/ui/2021"
 xmlns:x="http://schemas.alternetsoft.com/ui/2021/uixml"
 x:Class="DrawingContextTutorial.MainWindow"
 Title="DrawingContextTutorial"
 xmlns:local="clr-
namespace:DrawingContextTutorial;assembly=DrawingContextTutorial">
 <local:DrawingControl />
</Window>

using Alternet.Drawing;
using Alternet.UI;

namespace DrawingContextTutorial
{

58 / 70

6. In the overridden OnPaint method, add the following Graphics.FillRectangle call to paint the
control's background LightBlue:

7. Build and run the application. The displayed window will have a light blue background:

 public class DrawingControl : Control
 {
 public DrawingControl()
 {
 UserPaint = true;
 }

 protected override void OnPaint(PaintEventArgs e)
 {
 }
 }
}

using Alternet.Drawing;
using Alternet.UI;

namespace DrawingContextTutorial
{
 public class DrawingControl : Control
 {
 public DrawingControl()
 {
 UserPaint = true;
 }

 protected override void OnPaint(PaintEventArgs e)
 {
 e.DrawingContext.FillRectangle(Brushes.LightBlue, e.Bounds);
 }
 }
}

59 / 70

8. In the overridden OnPaint method, add the following two lines of code to paint a red circular
pattern:

9. Build and run the application. The displayed window will look like the following:

using Alternet.Drawing;
using Alternet.UI;

namespace DrawingContextTutorial
{
 public class DrawingControl : Control
 {
 public DrawingControl()
 {
 UserPaint = true;
 }

 protected override void OnPaint(PaintEventArgs e)
 {
 e.DrawingContext.FillRectangle(Brushes.LightBlue, e.Bounds);

 for (int size = 10; size < 200; size += 10)
 e.DrawingContext.DrawEllipse(Pens.Red, new(10, 10, size, size));
 }
 }
}

60 / 70

10. Now, let's draw a simple line of text. To do that, we will create a cached Font instance, and draw a
text line using the Graphics.DrawText method:

using Alternet.Drawing;
using Alternet.UI;

namespace DrawingContextTutorial
{
 public class DrawingControl : Control
 {
 public DrawingControl()
 {
 UserPaint = true;
 }

 private static Font font = new Font(FontFamily.GenericSerif, 15);

 protected override void OnPaint(PaintEventArgs e)
 {
 e.DrawingContext.FillRectangle(Brushes.LightBlue, e.Bounds);

 for (int size = 10; size < 200; size += 10)
 e.DrawingContext.DrawEllipse(Pens.Red, new(10, 10, size, size));

 e.DrawingContext.DrawText("Hello!", font, Brushes.Black, new
PointF(10, 220));
 }

61 / 70

11. Build and run the application. The displayed window will look like the following:

12. To demonstrate how Graphics.MeasureText works, let's draw the names of the three spring months
one under another:

 }
}

using Alternet.Drawing;
using Alternet.UI;

namespace DrawingContextTutorial
{
 public class DrawingControl : Control
 {
 public DrawingControl()
 {
 UserPaint = true;
 }

 private static Font font = new Font(FontFamily.GenericSerif, 15);

 protected override void OnPaint(PaintEventArgs e)
 {
 e.DrawingContext.FillRectangle(Brushes.LightBlue, e.Bounds);

62 / 70

13. Build and run the application. The displayed window will look like the following:

Congratulations, you have completed the Rendering Graphics with DrawingContext tutorial.

 for (int size = 10; size < 200; size += 10)
 e.DrawingContext.DrawEllipse(Pens.Red, new(10, 10, size, size));

 float y = 210;
 for (int month = 3; month <= 5; month++)
 {
 var text =
System.Globalization.CultureInfo.CurrentCulture.DateTimeFormat.GetMonthName(month);
 var textSize = e.DrawingContext.MeasureText(text, font);
 e.DrawingContext.DrawText(text, font, Brushes.Black, new(0, y,
textSize.Width, textSize.Height));
 y += textSize.Height + 10;
 }
 }
 }
}

63 / 70

Debugging with AlterNET UI Sources
While debugging your AlterNET UI application, it may be helpful to step into the AlterNET UI source code
to better understand what is happening under the hood.

Here are the steps required to get AlterNET UI Source debugging working in Visual Studio:

1. Clone or download the AlterNET UI repository on GitHub . Make sure you are using the source
tagged with the same version as the version of AlterNET NuGet packages you are using in your
project.

2. In Visual Studio, open Tools > Options > Debugging > Symbols (or Debug > Options >
Symbols). Under Symbol file (.pdb) locations, check NuGet.org Symbol Server.

3. In Visual Studio, open Tools > Options > Debugging > General (or Debug > Options > General).
Ensure Enable Just My Code is unchecked.

4. Start debugging your AlterNET UI application. To ensure the symbols are loaded, open Debug >
Windows > Modules, locate the Alternet.UI.dll and other Alternet dlls rows, and select Load
Symbols in the context menu.

5. After that, executing the Step Into command on an AlterNET UI method call will lead to an open file
dialog prompting to locate an AlterNET UI source code file. In that dialog, navigate to the AlterNET

https://github.com/alternetsoft/alternet-ui
https://github.com/alternetsoft/alternet-ui
https://github.com/alternetsoft/alternet-ui
https://github.com/alternetsoft/alternet-ui/tags
https://github.com/alternetsoft/alternet-ui/tags
https://github.com/alternetsoft/alternet-ui/tags

64 / 70

UI sources directory you prepared in step 1 and find and select the requested source file there.
6. After the initial setup described in the steps above is done, the AlterNET UI sources will be

debugged automatically without any additional actions required.

For additional information on consuming NuGet debug symbols, see this MSDN article .

https://devblogs.microsoft.com/nuget/improved-package-debugging-experience-with-the-nuget-org-symbol-server/#consume-snupkg-from-nuget-org-in-visual-studio
https://devblogs.microsoft.com/nuget/improved-package-debugging-experience-with-the-nuget-org-symbol-server/#consume-snupkg-from-nuget-org-in-visual-studio
https://devblogs.microsoft.com/nuget/improved-package-debugging-experience-with-the-nuget-org-symbol-server/#consume-snupkg-from-nuget-org-in-visual-studio

65 / 70

Using AlterNET UI NuGet Packages
The easiest way to create an AlterNET UI application project is to use the project templates that come
with AlterNET UI Visual Studio extension or can be installed separately using command line .

However, AlterNET UI Nuget Packages can be referenced manually in a .NET project. To reference
AlterNET UI framework in your project, add the following lines to your .csproj file:

The Version value can be set to one of the published versions of the AlterNET UI packages.

After you have added the packages, you can start a GUI application in your code. You can use the
following code to show an empty window in a .NET console application:

If you would like to hide the console created by the console application, change its OutputType to WinExe
like so:

<ItemGroup>
 <PackageReference Include="Alternet.UI" Version="0.9.200-beta" />
</ItemGroup>

class Program
{
 [STAThread]
 public static void Main(string[] args)
 {
 var application = new Alternet.UI.Application();
 var window = new Alternet.UI.Window();

 application.Run(window);

 window.Dispose();
 application.Dispose();
 }
}

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>WinExe</OutputType>
 </PropertyGroup>

https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
http://docs.alternet-ui.com/tutorials/hello-world/command-line/hello-world-command-line.html#prerequisites
http://docs.alternet-ui.com/tutorials/hello-world/command-line/hello-world-command-line.html#prerequisites
http://docs.alternet-ui.com/tutorials/hello-world/command-line/hello-world-command-line.html#prerequisites
https://www.nuget.org/packages/Alternet.UI
https://www.nuget.org/packages/Alternet.UI
https://www.nuget.org/packages/Alternet.UI

66 / 70

Using UIXML Previewer in Visual Studio
AlterNET UI extension for Visual Studio provides the UIXML previewer feature. It allows for editing
UIXML side-by-side with a live preview of the UI being edited.

Several UIXML previewer modes are available: Split Horizontal, Split Vertical, Design (only UIXML preview
visible on screen), UIXML (only UIXML code editor visible on screen):

You can also set options for the UIXML previewer in the AlterNET UI Extension Options page (click
Tools/Options... menu item, select AlterNET UI section):

https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022
https://marketplace.visualstudio.com/items?itemName=AlternetSoftwarePTYLTD.AlternetUIForVS2022

67 / 70

Using SkiaSharp with AlterNET UI
There are different ways to use SkiaSharp :

You can write an explicit conversions for SKBitmap from/to Image and GenericImage.

For example: var image = (Image) skBitmap;.

You can call Image.LockSurface and GenericImage.LockSurface in order to get SKCanvas.

For example: using var canvasLock = image.LockSurface(); var canvas = canvasLock.Canvas;.

Here you can find examples on using SkiaSharp with AlterNET UI.

Example of drawing on PictureBox control

GenericImage to SKBitmap and to PictureBox

 private void Draw(Action<SKCanvas,int,int> action)
 {
 RectI rect = (0, 0, PixelFromDip(pictureBox.Width),
PixelFromDip(pictureBox.Height));

 SKBitmap bitmap = new(rect.Width, rect.Height);

 SKCanvas canvas = new(bitmap);

 canvas.Clear(Color.White);

 action(canvas, rect.Width, rect.Height);

 var image = (Image)bitmap;
 pictureBox.Image = image;
 }

 private void GenericToSkia()
 {
 // Creates generic image from the specified url
 GenericImage image = new(backgroundUrl1);

 // Converts created generic image to SKBitmap
 var bitmap = (SKBitmap)image;

 // Converts SKBitmap to Image and assigns it to PictureBox control

https://github.com/mono/SkiaSharp
https://github.com/mono/SkiaSharp
https://github.com/mono/SkiaSharp

68 / 70

Paint UserControl on SKBitmap

LockSurface on GenericImage
These methods assume to be members of a Control.

 pictureBox.Image = (Image)bitmap;
 }

 private void PaintOnCanvas()
 {
 RectD rectDip = (0, 0, control.Width, control.Height);
 RectI rect = rectDip.PixelFromDip();

 SKBitmap bitmap = new(rect.Width, rect.Height);

 SKCanvas canvas = new(bitmap);
 canvas.Scale((float)control.ScaleFactor);

 canvas.Clear(Color.White);

 SkiaGraphics graphics = new(canvas);

 PaintEventArgs e = new(graphics, rectDip);

 control.RaisePaint(e);

 pictureBox.Image = (Image)bitmap;
 }

 private void LockSurfaceOnGenericImage(bool hasAlpha)
 {
 var width = 700;
 var height = 500;

 var image = GenericImage.Create(PixelFromDip(width),
PixelFromDip(height), Color.Aquamarine);
 image.HasAlpha = hasAlpha;

 using (var canvasLock = image.LockSurface())
 {
 var canvas = canvasLock.Canvas;
 canvas.Scale((float)ScaleFactor);

69 / 70

LockSurface on Bitmap and draw text
This example method assumes to be a member of a Control.

 canvas.Clear(Color.White);

 var font = Font.Default;

 canvas.DrawText("Hello", (600, 0), font, Color.Black, Color.LightGreen);

 canvas.DrawRect(SKRect.Create(width, height), Color.Red.AsPen);

 DrawBeziersPoint(canvas);
 canvas.Flush();
 }

 pictureBox.Image = (Image)image;
 }

 private void DrawBeziersPoint(SKCanvas dc)
 {
 Pen blackPen = Color.Black.GetAsPen(3);

 PointD start = new(100, 100);
 PointD control1 = new(200, 10);
 PointD control2 = new(350, 50);
 PointD end1 = new(500, 100);
 PointD control3 = new(600, 150);
 PointD control4 = new(650, 250);
 PointD end2 = new(500, 300);

 PointD[] bezierPoints =
 {
 start, control1, control2, end1,
 control3, control4, end2
 };

 dc.DrawBeziers(blackPen, bezierPoints);
 }

 private void DrawTextOnSkia(bool hasAlpha)
 {
 string s1 = "He|l lo";
 string s2 = "; hello ";

70 / 70

 var width = 700;
 var height = 500;

 bitmap ??= new Bitmap(PixelFromDip(width), PixelFromDip(height));
 bitmap.HasAlpha = hasAlpha;
 bitmap.SetDPI(GetDPI());

 using (var canvasLock = bitmap.LockSurface())
 {
 var canvas = canvasLock.Canvas;
 canvas.Scale((float)ScaleFactor);

 canvas.Clear(prm.BackColor);
 canvas.DrawRect(SKRect.Create(width, height), Color.Red.AsPen);

 PointD pt = new(10, 10);
 PointD pt2 = new(10, 150);

 var font = Font.Default;

 canvas.DrawText("Hello", (600,0), font, Color.Black, Color.LightGreen);

 canvas.DrawText(s1, pt, font, Color.Black, Color.LightGreen);

 canvas.DrawText(s2, pt2, font, Color.Red, Color.LightGreen);

 canvas.DrawPoint(pt, Color.Red);
 canvas.DrawPoint(pt2, Color.Red);

 DrawBeziersPoint(canvas);

 canvas.Flush();
 }

 pictureBox.Image = bitmap;
 }

	Introduction
	Getting Started
	Building Blocks
	Controls
	Layout
	Input
	Menu
	Status Bar
	Drag and Drop
	Clipboard
	Rendering Graphics
	Printing
	Resource URIs
	Focus Management
	System Requirements

	Tutorials
	Hello, World
	Hello, World (Command Line)
	Rendering Graphics with DrawingContext

	How-To Guides
	Debugging with AlterNET UI Sources
	Using AlterNET UI NuGet Packages
	Using UIXML Previewer
	Using SkiaSharp

